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COMPLEMENTARY PLASTIC WORK THEOREMS
IN PIECEWISE-LINEAR ELASTOPLASTICITY

G, MAIER

Politecnico di Milano, Milan, Italy

Abstract·-The paper deals with structures, whose constitutive laws exhibit a linear elastic range limited by
independently acting yield planes, and linear or piecewise-linear hardening, or nonhardening, plastic behaviour.
The consideration of the total complementary plastic work leads to a functional of the plastic strains, some
properties of which are established and stated as theorems applicable to various plastic and nonlinear elastic
problems.

1. INTRODUCTION

QUITE a few structural problems demand consideration of relations between generalized
stresses Qi and strains qi' which are such that a linear elastic law is obeyed within a certain
range but violated outside that range. The usual elastic work-hardening and the elastic
nonhardening idealizations of material behaviour are the most relevant examples. In these
cases, however, the "nonholonomic" nature of the constitutive law outside the original
hookean domain is a further essential feature. Structural elements buckling in the elastic
range and unilateral elastic supports are examples where the "holonomic" character of
the constitutive law is preserved outside the hookean range. Following L. Finzi [1], we use
here the term "holonomic" for reversible, path-independent or integrable stress-strain
relations.

Let us assume that a structure, which is nonlinear for the above reasons, has to be
analyzed under given loads in the domain of "small" deformations (where the influence
of geometry changes on equilibrium equations is negligible). It is sometimes convenient
to calculate first the linear elastic stresses due to the given external loads by assuming
unlimited validity of the linear elastic law and next to evaluate the additional strains and
their linear elastic consequences needed in order to comply with the actual constitutive
relations. Thereafter the true structural response is determined by superposing on the
linear elastic response the solution to a subsequent "corrective" nonlinear sub-problem.
This approach has been proposed and emphasized by Colonnetti in classical works on
elastic plastic continua [2].

For several classes of discrete cases, quadratic programming theory applied to the
latter, corrective, sub-problem has led to an apparently new "finite" extremum theorem [3J,
which can be regarded as a counterpart concerning inelastic strains ("finite" but "small")
of Ceradini's incremental or "differential" principle for plastic strain rat<..s [4].

In this paper those results are extended to continua by a more traditional path, an
alternative mechanical interpretation is proposed and some further conclusions are drawn.
Possible links with other previous work on related topics are pointed out in the concluding
remarks.
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2. FORMULATION

Let the elastic behaviour of the elements of a continuous structure be described by the
linear relation:

eh=ChkQk (h,k=I, ... ,m) (1)

where Qk are generalized stress components, and eh elastic generalized strain components;
Chk are elastic constants, such that Chk = Ckh and ehQh > 0 except for the undisturbed,
stressless state. The summation convention is adopted throughout the paper for subscript
indices but not for the superscript indices. We assume that in some or all elements, plastic
strains Ph can contribute to the total strains qh (so that qh = eh+Ph) according to the
following rules.

Let <Ili (i = I, ... , n) be "plastic potentials", defined, for any nonlinear element, as
follows:

<1>i = NihQh- Hi;,' K i,

<1>i ~ O.

(2)

(3)

In equation (2) Nih (h = 1, ... , m), K i, Hi are constants, the last of them (Hi) positive;
the "plastic multiplier" or "activation coefficient" Ai is related to the plastic strains through:

(4)

A point superposed on a symbol will denote derivation with respect to the time
function t. This is defined as an arbitrary monotonic increasing function of the physical
time, that is to say time-independent behaviour is assumed. The rates of the variables are
required to satisfy the conditions:

$i = 0 (hence Ai:;::: 0) when <Ili = 0 and NihQh:;::: 0 (5)

otherwise Ai O. (6)

Relations from (2) to (6) geometrically interpreted, as usual, in the m-dimensional space
with superposed co-ordinates Qh' qh' mean that there exist there n yield planes whose
equations are represented by relations (2) for <Ili (Ql" .. , Qm) = O. These yield planes:
(i) define the linear-elastic domain as the polyhedron where <1>i < 0 simultaneously for all
i = 1, ... , n; (ii) translate together with the stress point Q (Ql,' .. ,Q",) when the stress
point reaches and "activates" some of them moving outward with respect to the elastic
domain; (iii) by yielding independently of each other, they supply plastic strain contribu­
tions represented by vectors which are directed as their outward normal vectors
Ni == [Nil,"" N im].

To sum up, the element behaviour assumed is elastic-plastic, with piecewise-linear
yield surfaces, linear or piecewise linear hardening, obeying the normality property and
Koiter's hypothesis of noninteracting yielding modes at singular points [5].

The nonholonomic character of the plastic behaviour is completely expressed by the
flow rules (5), (6) only. If these rules are replaced by the following requirements:

<Ili = 0 (hence Ai:;::: 0) when NijQj-Ki :;::: 0, (7)

otherwise Ai = 0 (hence <1>i < 0) (8)

one obtains the corresponding "holonomic" constitutive laws.
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(9)

The holonomic laws formulated by relations from (1) to (4) supplemented by the
rules (7) and (8), either reflect an additional simplifying hypothesis on the element behaviour,
as in the "deformation theories" of plasticity, or result from the integration with respect
to the time function t of the flow-rules (5), (6), when plastic yielding "progresses regularly"
along the loading history (i.e. when no unloading occurs from a yield plane after it has
been activated). In the former case, a solution obtained on the basis of (7), (8) instead of
(5), (6), will be called here "holonomic solution", in contrast to the actual nonholonomic
one, obtainable on the basis of relations (5), (6) by following step-by-step the whole loading
history of the structure. Sometimes, as in the examples mentioned in the introduction, the
holonomic constitutive laws of the preceding type can be used as a piecewise linearized
description of a nonlinear but path-independent mechanical behaviour [3]. These cases
are implicitly covered by the analysis which follows although the term'''plastic'', referred
both to potentials <Pi and strains Ph' becomes, of course, not appropriate for them ; explicit
reference to these cases in more suitable terms will be made in the conclusions only.

The response ofthe continuum considered to given loads on the hypothesis of unlimited
linear-elastic behaviour according to equation (1), is supposed to have been preliminarily
calculated by means of one of the classical elasticity methods. The superscript E will
denote any quantity obtained under this hypothesis (e.g. Q~, en We shall be concerned
here after only with the determination of the set of n scalar functions Ai which define the
distribution of the inelastic strains Ph'

3. ANALYSIS

3.1. Let a continuum, whose constituents obey the nonholonomic stress-strain laws
considered in Section 2, be subjected, at instant ., to surface tractions 1; on the uncon­
strained region ST of its boundary and to body forces Fj throughout its volume V (index I
refers to the axes of a reference system for the whole structure).

The actual displacements Ul at any instant t may be considered as the sum of the
displacements uf in a purely linear-elastic regime under the same load condition, and of
the path-dependent plastic remainder uf = ul-uf. Thus the quantity:

Lcp = f dS r 7;(t)uf(t) dt + r d V r P1(t)uf(t) dt
Sr Jo Jv Jo

may be referred to as "total complementary plastic work" performed during the loading
history from the undisturbed state at t = 0 up to t = •.

Let Q~ denote the self-stresses generated by the plastic strains Ph; let the symbol e~
denote the elastic strains related to Q~ through equation (1).

The actual stresses Qh and the actual total strains qh at any t may be conceived as
split into the previously defined addends:

Qh = Qf+Q~, qh = eh+Ph = ef+e~+Ph'

The displacement field UI and the strain set qh are compatible and the same holds for
uf and ef; also the strains Ph + e~ correspond to a compatible deformation, namely to the
one defined by the field of displacements uf at the same time. Apply the principle of virtual
work by associating to the compatible extensive quantities uf, Ph + e~, the equilibrated
system of external force increments 7; dt, PI dt, and stress increments Qh dt. Thus, if the
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( 11)

(3)

(14)

displacement field is supposed to be continuous, the right side of equation (9) can be
rewri tten in the form:

La = r d V r Qh(t)Ph(t) dt + r d V Jot Qh(t)e~(t) dt. (101Jv Jo Jv 0

On the right side of(10), let us introduce equation (4) into the first term. For the second
term, taking into account that Qh = Qf +Q~ and that Qfe~ efQ~ due to the symmetry
of the matrix {Chk } in equation (1), let us apply the principle ofvirtual work to the compatible
deformation eE,!if and to the self-equilibrated stresses Qf Thus, equation (10) becomes:

La = r d V r Qh(t)NihAi(t) dt + r d V i' Q~(t)e~(t) dtJv Jo Jv 0

whence, substituting into (11) equation (2) differentiated with respect to time:

Lcp = r dvi' Ai(t)<Pi(t)dt+ r dvi' [H;J'i(t)A.;(t)dt+Q~(t)e~(t)]dt. (12)Jv 0 Jv 0

Integrate now over the time interval'!: the first integral by parts and taking into account
the flow rule (5), which implies that Ai<Di = 0 at any instant 1. We obtain:

La = r <DiAi d V +t JO (HiAt + Q~e~) dV.Jv v
The second integral in (13) is always positive and depends only on the final distribution

of plastic strains. The first integrand is non-positive, since <Di S; 0, equation (3), and Ai ~ 0
as a consequence of (5) and (6). Therefore:

Lcp S; t Iv H)t dV +t Iv Q~e~ dV.

The first integral vanishes in (13), and the equality sign holds in (14), only if, at t = T,

the stress point of any element lies on all yield planes which have been activated; this
condition is satisfied when the yielding process is regularly progressive. Note in passing
that the second integral of (14), which recurrently appears in the subsequent formulae,
represents the elastic strain energy connected with the plastic strains, i.e. "stored" in the
structure as their consequence.

Substituting equation (2) into (13), Lcp is expressed as a functional of the given external
forces (through their linear consequence Qfl and of the final plastic strain field (through
the scalar functions Ai which define it and through its linear consequences Q~, e~):

(15)

3.2. We shall now calculate the total complementary plastic work for the same
structure and loading condition, but attributing a holonomic character to the constitutive
laws, namely replacing the incremental rules (5), (6) with the finite rules (7), (8). A superscript
owill label the variables corresponding to the solution in this case, i.e. to the "holonomic
solution".

The same path of reasoning as above leads to an expression completely analogous to
equation (12). The present holonomic hypothesis, however, requires the first integrand
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(16)

(17)

(18)

(20)

of (12) to vanish identically, since <1>?(tj = °and, hence <i>?(t) =-0, as long as A? ::f- 0,
by virtue of relations (7), (8). Therefore, after the integration over O-r, we obtain:

o 1 i -o'dV 1 i Qso sOdVLcp = 2 HiAi +2 h eh
v v

whence, by using equation (2) and taking into account that now <1>i
O

AiD = 0, this alternative
form is attained:

Lgp =!t (QrNih-KY? dV.

A combination of (16) and (17) gives, in full analogy to (15):

Lgp = t(Q~Nih-Ki)A?dV-it (Hi?c?' +Qren dV.

3.3. Consider now an expression analogous to (15) and (18), but written on the basis
of a plastic strain field Ph defined through the normality relation (4) by arbitrarily chosen
non-negative activation functions ?ct :2': °and on the basis of its linear consequences
Q~* and e~*:

If'(?c*) = t (Q~Nih-Ki)?ct dV-i t H)fdV-i t Q~*e~*dV (19)

By means of the principle of virtual work, we have:

t Q~*e~* dV = - t Q~*pt dV.

If x, ¢ are symbols for space co-ordinates in V and if Zhk(X, ¢) are the relevant influence
functions, one may express explicitly as follows the dependence of the self-stresses Q~* on
the plastic strains pt which give rise to them as dislocations (in the sense of Volterra and
Love) operating on the structure in linear elastic conditions:

Q~*(X) = t Zhk(X, ¢)ptw dV.

Through (20) and (4) expression (19) becomes:

If'(A*) = t (Q~Nih-KJ?ct dV -itH)f dV

+±It ?ct(X)Nih(X)Zhk(X, ~)Njk(~)AjW dV dV.

(21)

(22)

In this form If' is explicitly expressed as a quadratic junctional oj the non-negative
junctions At(X) (i = 1, ... , n) defined over V. As has been seen, for the actual solution Ai
and for the holonomic solution A?, the functional If' represents the total complementary
plastic work Lcp , equation (15), and Lgp , equation (18), respectively. For an arbitrary set
At 20, If'(A*) may be given the mechanical interpretation that follows.

Let TT, FT be forces capable of generating the arbitrarily chosen plastic strains pr
through any given loading path according to the nonholonomic stress-strain relations.



266 G. MAIER

(27)

The total complementary plastic work performed along this path can be written in form (13 i'

Lh =1<I>i Ai dV +i1 (H)f+Q~*e~*)dV. (23)
v v

Let us consider the virtual work done by the above starred external forces for the
corresponding plastic displacements uf*. This "virtual plastic work", denoted by Ltp.
can be expressed as follows, subsequently making use of the principle of virtual work and
of equations (I) and (2):

Ltp = J Ttuf* dS +1Ftuf* d V = J. Q:(p: + e~*) d V
ST V v

(24)

= 1Q:p: dV +1Q~*e~* dV = 1(<I>i;.,t+Hlf +K;XndV +1Q~*e~* dV.
v v v v

Let us now consider the virtual plastic work LvI' done by the actual given loads for
the same compatible deformation as above. described by the displacement field uf*. By
means of the principle of virtual workt and of equation (4), we obtain:

LvI' = J1;uf* dS + f F/uf* dV =1 Q~P: dV =r N;hQ~2r dV. (25)
S v v Jv

The difference LeI' = LvI' - Ltp represents the virtual work performed, again for the
deformation due to the trial plastic strains P:, by the external force set 1;- Tr. F/- Fr.
i.e. by the difference between the actually given load system and the force system which
would produce the plastic strains pr

The algebraic sum Ltp+Lvp-Ltp, by introducing equation (23) and the last forms of
equations (24) and (25), turns out to identify with the right side of equation (19). Therefore:

,¥(},*) = Ltp+ LeI" (26)

On the ground of the preceding definitions for Ltp and LeI" equation (26) specifies
the mechanical meaning of the functional '11(2*) for any set 2i ;:::: O. When the Ai-set
identifies either with the nonholonomic solution A; or with the holonomic solution /.?
equation (26) is reduced either to '¥(A) LeI' or to ,¥(},o) = Lgp respectively.

3.4. We shall now prove two inequalities relating to the functional '¥(A*). Given the
linear plastic response Qf. let d( ) indicate the difference between the value the argument
assumes for the holonomic solution A? relative to the assigned loads, and the value it
assumes for a set of non-negative functions Ai ;:::: 0 (i = 1, ... , n) arbitrarily chosen over V.
Where necessary superscripts 0 and * will designate quantities pertaining to one or the
other case. From equations (15) and (18) we obtain:

d'¥ = ,¥(),o)-'¥(2*) = Iv (N;hQ~-Ki)d2idV

t The symmetry of the elastic constant matrix and the principle of virtual work imply that:

f Q~ e~* d V = f Q~* e~ d V = o.
v v
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Through the equation:

LQ~*pZ dV = LQ~opt dVt

and further, through equation (4), we may write:

L~(Q~Ph)dV= - L~Q~~PhdV+2 LQ~o~PhdV

= - L~Q~~PhdV+2LQ~oNhi~AidV.

Substituting into equation (27), equation (29) and the identity
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(28)

(29)

~(Af) = -(~Ai)2+2AiO~A,i,

equation (27) acquires the form:

NP = L[(Q~o+Qf)Nhi-HiA?-KiJ~AidV+t L[Hi(~A;)2_~Q~~PhJdV. (30)

Finally, by means ofequation (2), taking into account that Q~o+ Qf = QZ, and by means
of a virtual work equation analogous to (20), from equation (30) we 09tain:

In the right side of (31) the first integrand is non-negative, as <I>? and Ar cannot have
the same sign; the second is zero, since in the holonomic solution either <I>? or A? must be
zero for any element and any yield plane i; unless A? = Ar, the third integral is positive
as long as Hi > 0 for any i (strain-hardening behaviour); the fourth integrand cannot be
negative because it represents "stored" elastic energy, as has been previously noticed
(Section 3.1). These remarks lead to the conclusion that:

'P(AQ
) ~ 'P(A*) for any Ar(X) ~ 0 (i = 1, ... , n). (32)

The plastic strain field actually produced by the given loads in the loading history is
defined by functions Ai which certainly belong to the class of all nonnegative functions
Ar ~ 0 over V. Therefore the preceding inequality implies also that:

(33)

In the inequalities (32) and (33) the equality sign holds if and only if At == A?, or, re­
spectively, A? == Ai.

t In the virtual work equations analogous to (20)

{ Q~*pg dV + {QreZ° dV = 0; { Q~op: dV + Iv Q~oe~*dV = 0

the second integrals are equarbecause of the symmetry of the elastic constants C.k = Ck.; equation (28) follows.
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4. CONCLUSIONS

4.1. Considering once again the problem of finding the plastic strains formulated in
Section 2, let us deal first with nonholonomic constitutive laws of the type described.
viz. elastic plastic continua in the framework of an incremental theory. In this context
inequality (32) may be expressed in the following terms:

(Theorem 1) "For given loads, of the admissible plastic strain fields the one corresponding
to the holonomic solution maximizes the functional '1', equation (22), which represents in both
the actual and the holonomic solutions the total complementary plastic work pertaining
to them."

The term "admissible" is used to draw attention to the fact that any trial plastic strain
set must be defined by nonnegative scalars At, i.e. must comply with the outward normality
rule expressed by equation (4) and by the sign restriction At ~ O.

This theorem. like the other "finite" extremum theorems so far formulated in plasticity,
characterises the solution of the problem merely within the framework of deformation
theory. The holonomic solution is the actual one only if the loading history is such that any
activated yield surface contains the stress point, or, in particular, such that plastic yielding
progresses regularly. When the loading path is particularly simple, e.g. when all loads are
proportional to a monotonically increasing parameter, sometimes, but not always, we can
expect these conditions to be satisfied.

In the general case inequality (33) allows a comparison between the actual and the
holonomic solution, since it may be expressed, on the ground of the above analysis, by the
following corollary:

(Theorem 2) "For given loads, the total complementary plastic work pertammg to the
holonomic solution is an upper bound on the total complementary plastic work of the actual
path-dependent solution whatever the loading path may be."

Since the total complementary elastic work is equal in both cases, this statement holds
even if the term "plastic" is omitted and the total complementary energy as a whole is
referred to.

It is worth noting that inequality (14), Section 3.1, merely supplies a rather obvious
upper bound on the total complementary plastic work that can be performed for given
final plastic strains. It can be expressed alternatively as follows: "Ifa distribution ofplastic
strains can be reached through a loading path of regular progression, this path maximizes,
within the class of all loading paths leading to that distribution, the total complementary
plastic work."

4.2. Consider now truly holonomic constitutive laws with the restrictive characteristics
specified in Section 2, i.e. referring to continua whose elements behave elastically, according
to nonlinear but piecewise linearized laws.

For this case the extremum property of 'P(A*), inequality (32), applies to the true
solution and can be restated in more appropriate terms as follows:

(Theorem 3) "For given loads, of all fields of 'admissible corrective' strains, the actual
solution maximizes the jUnctional '1', equation (22), which represents at the solution the total
complementary work relative to the corrective strains."
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Here again "admissible" must be understood in the sense specified for statement 1.
The term "corrective" replaces plastic for the strains Ph which represent the unknowns of
the problem.

We note in passing that the class of trial strain distributions still includes all the
distributions corresponding to all functions sets Xt ::2: 0 (i = 1, ... , n) defined over V and
does not need to meet the restrictions imposed by the holonomy of the stress-strain laws.

4.3. The remarks which follow extend the applicability of the preceding conclusions
and indicate their links with previous work.

(a) Only surface and body forces have been considered in discussing the mechanical
interpretation of functional '1', but only the linear elastic response to them is present in the
expression of '1'(.:1.*) as the known functions Q{. 1f the structure is acted upon differently
(displacements imposed by moving constraints, temperature changes etc.) the resulting
stresses Q{ may be always attributed to equivalent loads and the theorems formulated
apply unaltered.

(b) The discussion has been carried out for simplicity with reference to hardening
behaviour outside the linear-elastic range. If, however, the hardening coefficients Hi intro­
duced in equation (2), are taken all zero, then merely the equality sign must hold in the last
relations at (5) and (7) and the functional 'P(A*) looses the term containing Hi' On the right
side of equation (31) the third integral vanishes but the fourth is still non-negative, and,
consequently, the properties established for '1'(2*) still hold.

Hence the above theorems cover the elastic perfectly plastic behaviour as long as it is
understood that in this case neither the holonomic nor the nonholonomic solution is
necessarily unique or even exists. Equation (16) shows that, in this case, the total comple­
mentary plastic work for the holonomic solution equals the elastic strain energy connected
with the plastic strains which correspond to the holonomic solution.

Within the particular context of perfect plasticity, theorem 2 can also be directly deduced
from Hodge's theorem of bounding complementary energy established by a quite dif­
ferent approach [6].

(c) A negative coefficient Hi' along with the inversion of the last inequality in (5) and (7)
for the same index i, would represent a softening or unstable behaviour at the corresponding
boundary face of the linear elastic range, as an alternative to a stable stress path of "elastic
unloading". Section 3.4 shows that allowance for such occurrence by no means affects the
validity of the theorems established, as long as the sum of the last two integrals in equation
(31) remains non-negative definite, i.e. provided that the quadratic part of functional 'P(A.*),
as defined by equation (22), remains non-positive definite. Thus the present conclusions
appear to be subjected not to Drucker's stability postulate [7], but to a weaker overall
condition, similar to those discussed in [8] for the stability of sets of situations, with
reference to truss-like structures.

(d) The holonomic constitutive laws considered in the paper can be adopted as a
piecewise linearization of nonlinear elastic stress-strain relations, particularly for structures
consisting ofone-component elements (m = 1), e.g. for beams analyzed in terms of bending
moment and curvature as generalized stress and strain variables.

Because of Hoff's analogy between nonlinear elastic and steady creep problems [9J,
theorem 3 may be applied also to the latter ones.

(e) Theorems I and 3 reduce the holonomic solution of the problems formulated in
Section 2, to the sign constrained optimization of the quadratic functional '1'(2*) expressed
by equation (22). This optimization might be efficiently carried out by means of the
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analytical methods proposed by Villaggio [10J for constrained solutions. For the parallel
discrete problems some quadratic programming procedures have been applied by the
writer [IIJ, and proved to be fit for various practical cases.
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A6CTpaKT~Pa6oTa 3aHHMaeTCll KOHCTPYKI.\lfllMIf, KOTOpbIX JaKOHbI COCTOllHlfll npOllBJIlIlOT JIIfHeHHhIH
yrrpynlii npeAeJI, rrpH He3aBHClfMO AeHcTBYIOIl.\HX rrJIOCKOCTlIX Te'leHlfll If JIIfHeHHOe rrJIaCTH'leCKOe
nOBeAeHlfe C yrrpO'lHeHHeM IfJIH fie3 yrrpO'lHeHlfll. PaccMoTpeHlfe nOJIHOH, AOrrOJIHIfTeJIhHOH nJIaCTIf'leCKOH
pa60ThI rrpHBOJ];IfT K <PYHKI.\HOHaJIY rrJIaCTIf'leCKIfX Ae<p0pMaI.\IfH. YCTaHOBJIHBaIOTClI HeKoTophle CBOHCTBa
3THX Ae<p0pMaI.\IfH H <POPMYJIIfPYIOTClI 1'fX B Ka'leCTBe TeopeM, nplfMeHIfMhIX K paJHhIM rrJIaCTIf'leCKHM 1'f
HeJIHHeHHhIM yrrpyrHM JaAa'laM.


